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Sinkhorn Adversarial Attack and Defense
A V Subramanyam, Member, IEEE

Abstract—Adversarial attacks have been extensively investi-
gated in the recent past. Quite interestingly, a majority of these
attacks primarily work in the lp space. In this work, we propose a
novel approach for generating adversarial samples using Wasser-
stein distance. Unlike previous approaches, we use an unbalanced
optimal transport formulation which is naturally suited for
images. We first compute an adversarial sample using a gradient
step and then project the resultant image into Wasserstein ball
with respect to original sample. The attack introduces perturba-
tion in the form of pixel mass distribution which is guided by a
cost metric. Elaborate experiments on MNIST, Fashion-MNIST,
CIFAR-10 and Tiny ImageNet demonstrate a sharp decrease
in the performance of state-of-art classifiers. We also perform
experiments with adversarially trained classifiers and show that
our system achieves superior performance in terms of adversarial
defense against several state-of-art attacks. Our code and pre-
trained models are available at https://bit.ly/2SQBR4E.

Index Terms—Sinkhorn, Dual Wasserstein, Adversarial attack
and defense.

I. INTRODUCTION

THE radical success of deep learning has led to wide scale
deployment of deep learning systems for multiple tasks

in real-world. While these systems have shown tremendous
progress over the years, they are known to be vulnerable to
imperceptible perturbations [1], [2]. In particular, when deep
learning systems are deployed in sensitive applications such as
autonomous vehicles, face recognition or malware detection,
it is necessary to elaborately evaluate the system’ robustness
against various adversarial attacks.

The goal of adversarial attack in a classification setting is
defined as follows. Let x be an input sample, y be the ground
truth label, ŷ be a label other than y, and F is a trained
classification model. Then, in order to generate an adversarial
sample, the adversary adds an imperceptible perturbation ∆x
to x such that,

F (x+ ∆x) 6= y or F (x+ ∆x) = ŷ. (1)

Szegedy et al. [1] proposed the first work on generation
of adversarial sample for deep neural networks. The authors
formulated it as an optimization problem and obtained the
adversarial sample using an additive perturbation by solving
the objective using L-BFGS. Since then, a lot of works
have been proposed in this direction. Noting that L-BFGS
is computationally expensive, Goodfellow et al. [2] proposed
a fast gradient sign method (FGSM) to efficiently compute
the adversarial sample. Kurakin et al. [3] extended FGSM for
targeted attacks where F (x+ ∆x) can be guided to output a
target label other than the ground truth label. These attacks can
be categorised as lp norm based attacks. In particular, a vast
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majority of attacks are proposed using lp norm only. However,
some notable works perform the attacks using Wasserstein
distance [4], [5], [6], [7], the focus of our work.

In this work, we propose a Wasserstein distance based
attack. Prominent works in this domain, Wong et al. [4] and
Hu et al. [5], derive the objective formulation from balanced
optimal transport (OT) problem. Balanced OT is defined under
the assumption that the total probability masses between the
distributions over which the Wasserstein distance is computed
are the same. However, this definition is restrictive when the
distance is to be computed over signals such as images. In
order to address this issue, some works relax the equality
constraints [8], [9] and solve a partial transport problem. In
our work, we cast the formulation as an unbalanced optimal
transport problem where the requirement of same probability
masses is relaxed [10]. Unbalanced OT has also shown a
promising performance in other domains such as compu-
tational imaging [11], domain adaptation [12], multi-label
classification [13], document retrieval [14], crowd counting
[15], natural language generation [16].

Another advantage of Wasserstein distance, in contrast to
pixel-wise lp distance, is that it accounts for the geometry of
the signals by incorporating a cost matrix for transporting mass
from source to target. Wasserstein distance has been used in
tasks such as image synthesis [17], [18] and has demonstrated
to be better metric compared to pixel-wise losses like MSE.
We show an illustration using Figure 1. We can see that both
images are very similar to human vision. However, the l∞
distance is 1 between them. On the other hand Wasserstein
distance is only 0.0015. This indicates that though the images
can be perceptually very similar, l∞ distance can be very
large compared to Wasserstein distance. In other words, even
a minor adversarial attack may overshoot the available budget
under l∞ norm. Whereas, Wasserstein distance may lead to
large distance only when the attack is moderate to severe
and under such attacks it shall significantly deteriorate the
performance of the undefended model. Thus, Wasserstein
distance may be better suited while adversarially modifying
the images.

In the proposed work, we first obtain an lp norm perturbed
sample using FGSM which is then projected into the vicinity
of original sample measured in terms of Wasserstein distance.
While projecting the sample into Wasserstein ball, the ob-
jective also minimizes l2 distance between output adversarial
sample and lp norm perturbed sample. We solve the problem in
dual domain using modified Sinkhorn iterations [19]. Further,
we also demonstrate that when the adversarial samples are
used for training the model, the trained model exhibits a strong
defense against several state-of-art attacks.
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Fig. 1: Original (left) and rotated (right) image. Red box
indicates the boundary of image and is not a part of the image
itself.

II. RELATED WORKS

Adversarial Attacks FGSM’ simplicity and efficiency trig-
gered a huge interest in gradient based attacks which are
predominantly in lp space. Kurakin et al. [3] proposed a basic
iterative FGSM which generates adversarial examples using
small step size. The attack is more severe than one-step FGSM
and is also scalable to large scale datasets like ImageNet.
Madry et al. [20] introduced projected gradient descent as
a universal first-order adversary and demonstrated it as the
strongest first order attack. This work also emphasizes that
more complex models can perform better against one-step
perturbations. However, this also decreases the transferability.

Carlini and Wagner [21] introduced l2, l0 and l∞ attacks to
demonstrate the vulnerability of neural networks against de-
fensive distillation [22]. They evaluate a combination of seven
different objective functions with 3 different box constraints
and highlight that cross-entropy based objective function is the
worst performing among all objective functions. Further, they
also investigate transferability of attacks. Here, an unsecured
standard model is used to determine strongly misclassified
adversarial example which can also successfully attack the
distilled models.

Papernot et al. [23] proposed a Jacobian based method
to construct an adversarial saliency map. The saliency map
is constructed using forward derivative of the network with
respect to the input features. The derivatives which take higher
positive values lead to high saliency. These high saliency
values then identify whether the corresponding features will
increase the likelihood of target class or decrease the likelihood
of other classes. Further, the features are perturbed to obtain
the adversarial samples. This method has a significant benefit
as it perturbs only a small fraction of the input features.
Saliency maps have also been used in other works such as
[24].

Athalye et al. [25] synthesized 2D and 3D adversarial
objects using an expectation over transformation. Since many
attacks do not survive the real world scenarios like viewpoint
variations, authors propose to use an expectation over affine
transformations or rendering of texture in case of 3D. In [26],
Croce and Hein proposed AutoAttack which addresses the
fixed step size, budget and optimization issues of projected
gradient descent based attacks.

In [27], Dong et al. identified that iterative FGSM is
less transferable as it tends to overfit the model. To address
this issue, the authors proposed a momentum based iterative

FGSM which is both stronger and transferable compared to
basic iterative methods. The authors point out that iterative
methods easily get trapped into local maxima which results
in poor transferabilty as the decision boundaries of different
models are not the same. On the other hand, incorporating
momentum stabilizes the update direction and allows escaping
from local maxima. Su et al. [28] proposed an extreme
attack by modifying the RGB values of a single pixel using
differential evolution [29]. This method does not use any
gradient information and has better transferability as very less
target model information is needed.

In [30], Zhang et al. theoretically analyzed the regulariza-
tion terms for adversarial defense. The authors show that the
presence of additional regularization term that minimizes the
difference between predictions for clean and attacked samples
lead to an upper bound on the error between accuracies for
robust models and standard models. Wong et al. point out
that adversarial training using FGSM where the adversarial
perturbation from previous iteration is used is not robust.
They propose to use random initialization and demonstrate that
adversarial robustness can be achieved via standard adversarial
training [31]. In [32], authors proposed to find a direction
normal to decision classifier and iteratively perturb the sample
till an adversarial example is generated. Xie et al. proposed
Diverse Inputs Iterative Fast Gradient Sign Method (DI2-
FGSM) to improve the transferability of attacks. Before feed-
ing the image to an iterative FGSM, the image is processed
using different transformations. The diverse patterns that are
generated due to transformations lead to better transferability
[33].

Adversarial Defense Countering adversarial attacks, the
goal of adversarial defense is to achieve the accuracy compara-
ble to that of untargeted model. The defense methods either use
adversarial examples during training or modify the network
itself. Adversarial training is often considered as a first line
of defense [1], [2], [32] and also demonstrates the strongest
defense. Among other class of defenses which modify the
network are defensive distillation [22], gradient regularization
[34], biologically inspired models [35], [36], convex ReLU
relaxation [37], image enhancement [38], image restoration
[39].

Entropic Regularized Optimal Transport

f(Π) = min
Π∈U(x,z)

〈C,Π〉+ γ〈Π, ln Π〉 (2)

U(x, z) = Π ∈ Rn×n+ : Π1 = x,Π>1 = z,

where Π is the transportation plan, ln Π operates element-wise,
Cn×n+ is the cost matrix, and, 1 is an n−dimensional vector of
all ones. 〈., .〉 denotes Frobenius product of matrices. Since the
term γ〈Π, ln Π〉 is strongly convex, the objective in Equation 2
is strongly convex and admits an optimal solution. In addition,
the higher computational complexity for computation of exact
OT (O(n3logn)) owing to interior-point methods [40], is also
addressed by this entropic regularized version and has been
demonstrated to achieve an O(n2) in the celebrated work by
Cuturi et al. [41].

Regularized Balanced Optimal Transport In this paper,
we focus on Wasserstein space attacks. In contrast to pixel
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based distance measures, Wasserstein distances incorporate the
geometry of the pixels. Quite recently, Wong et al. [4] pro-
posed a projected Sinkhorn attack characterized by projected
gradient descent followed by projection onto Wasserstein ball.
More formally, let l(x, y) be a cross-entropy loss, α be step-
size and ∇x denotes the gradient of the function with respect
to x. Then,

w = x+ α∇xl(x, y) (3)

Now, w can be projected either into an lp ball or Wasserstein
ball. Here, we consider projection into Wasserstein ball only.
Then, to drop w into Wasserstein ball of ε radius, we solve
for,

min
z,Π

λ

2
‖w − z‖22 +

∑
ij

Πij ln Πij (4)

subject to Π1 = x,Π>1 = z, 〈Π, C〉 < ε.

Upon projection into Wasserstein ball, the images are
clamped such that the pixels are in the range [0, 1]. Due to this
clamping, the algorithm overshoots the available budget. Hu
et al. [5] improve this shortcoming by adding an l∞ constraint
on z and solve the following,

min
z,Π

λ

2
‖w − z‖22 +

∑
ij

Πij ln Πij (5)

subject to Π1 = x,Π>1 = z, 〈Π, C〉 < ε, zj ≤
1

‖w‖1
.

Hu et al. also show that l2 norm based PGD step with large
step-size is effective compared to l∞ norm.

Equations 4 and 5 use a regularized version of OT and
in practice compute an approximate Wasserstein distance. In
order to compute exact Wasserstein distance, Wu et al. [6]
propose a dual projection method and apply Frank-Wolfe
algorithm to obtain the optimal transport matrix. In addition
to the attacks, certified robustness against Wasserstein attacks
based on Wasserstein smoothing has also been proposed [42].
Wasserstein distance based feature matching is also demon-
strated to be prominent defense mechanism in [43].

Unbalanced Optimal Transport The entropic regularized
OT can only be used when the total probability masses are
same. This restriction naturally precludes employing entropic
regularized OT to pixel domain. In order to address this issue,
unbalanced OT has been proposed [44], [45], [10]. Unbal-
anced OT uses KL divergence instead of marginal equality
constraints and solves the formulation using the Fenchel-
Legendre dual form [46]. Such relaxed formulation has also
been proposed in [13], though solved in the primal form.

III. METHODOLOGY

In this section we discuss our proposed objective formu-
lation and analytically derive the solution. We also show a
geometric convergence proof. The formulations proposed in
Equations 4 and 5 need the marginals (x, z) to be probability
vectors [41]. However, images do not inherently lie in prob-
ability simplexes and normalizing them to probability vectors

leads to information loss [47], [44], [10]. To overcome this,
we relax the equality constraints as,

min
Π
〈Π, C〉+ η〈Π, ln Π〉+ τΦ(Π1, x) + τΦ(Π>1, z), (6)

where, Φ(a, b) is a divergence measure. In this work, we use
Φ(a, b) = KL(a‖b) =

∑n
i=1 ai log

(
ai
bi

)
− ai + bi. Note that

the generalized KL divergence definition follows from [48].
Smooth measures such as l2 can also be applied [49], [50].
We provide a discussion on l2 regularization in Section IV.

By applying Fenchel-Legendre conjugate dual [46], the
formulation in Equation 6 can be re-written as,

max
α,β
−F ∗(−α)−G∗(−β)− η

∑
ij

exp(
αi + βj − Cij

η
),

where,

F ∗(α) = max
Π

Π>α− τKL(Π1||x)

G∗(β) = max
Π

Π>β − τKL(Π>1||z)

Now, we need that w, obtained in Equation 3, be dropped
into Wasserstein ball with respect to x. In other words, we
need the output adversarial sample z which is closer to w in
l2 sense and lies in a given Wasserstein ball with respect to
clean sample x. Thus, the objective can be written as,

min
α,β,z

h
(
α, β, z

)
= η

∑
ij

exp(
αi + βj − Cij

η
)+ (7)

τ〈exp(−α/τ), x〉+ τ〈exp(−β/τ), z〉+
γ

2
‖z − w‖2,

where, ‖.‖ denote l2 norm. We solve for each variable
independently by taking derivative with respect to single
variable and setting to zero.

Solving for α

To solve for α, we minimize the following equation,

min
α
η
∑
ij

exp(
αi + βj − Cij

η
) + τ〈exp(−α/τ), x〉 (8)

Taking derivative of Equation 8 wrt. αi,

∇αh(α, β, z) = e
αi
η

∑
j

e(βj−Cij)/η − xie−
αi
τ (9)

Setting Equation 9 to zero gives,
αi
η

+ ln
(∑

j

e(βj−Cij)/η
)

= lnxi −
αi
τ

(10)

αk+1
i =

[
lnxi − ln

(∑
j

e(βkj−Cij)/η
)] ητ

η + τ
, (11)

where k denotes the iteration index. We can further manipulate
Equation 11 to obtain,

αk+1
i =

[αki
η

+lnxi− ln
(∑

j

e(αki+βkj−Cij)/η
)] ητ

η + τ
. (12)
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Solving for β

To obtain β, we solve for

min
β
η
∑
ij

exp(
αi + βj − Cij

η
)+τ〈exp(−β/τ), z〉+γ

2
‖z−w‖2.

Similar to solution for α, we obtain,

βk+1
j =

[βkj
η

+ ln zj − ln
(∑

i

e(αki+βkj−Cij)/η
)] ητ

η + τ
. (13)

Solving for z

To obtain z, we solve for

min
z
τ〈exp(−β/τ), z〉+

γ

2
‖z − w‖2.

Then,

∇zh(α, β, z) = τe−βi/τ + γ(zi − wi) (14)

which gives,
zk+1 = w +

τ

γ
e−β

k+1/τ (15)

We iteratively solve for α, β and z for a fixed number
of iterations. Since the iterations alternatively update α and
β, the algorithm can be considered to perform Sinkhorn-like
iterations [44], [10]. We present these steps in Algorithm 1.

Algorithm 1: Modified Sinkhorn iterations for com-
puting adversarial sample

Input: k = 0, α0 = β0 = 0, η = 0.001, τ = 0.01, γ =
0.5, B(αk, βk) =
diag(eα

0/η)e−C/ηdiag(eβ
0/η)

Output: z,B(αk, βk)
while convergence do

rk = B(αk, βk)1n =
∑
j e

(αki−Cij/η+βkj )/η

qk = B(αk, βk)>1n =
∑
i e

(αki−Cij/η+βkj )/η

For even k
αk+1 =

[
αk

τ + ln(x)− ln(rk)
]
ητ
η+τ

βk+1 = βk

For odd k
βk+1 =

[
βk

τ + ln(z)− ln(qk)
]
ητ
η+τ

αk+1 = αk

zk+1 = w + τ
γ exp(−β

k+1

τ )

B(αk, βk) = diag(eα
k/η)e−C/ηdiag(eβ

k/η)
k = k + 1

end

Lemma 1 Let (α∗, β∗) be the optimal solution of Equation
7. Then, the sup norms of the optimal solution ‖α∗‖∞, ‖β∗‖∞
and ‖z‖∞ are bounded by,

max{‖α∗‖∞, ‖β∗‖∞} ≤ τR (16)

‖z‖∞ ≤ ‖w + τ/γe−min(β∗/τ)‖∞ (17)

= ‖w‖∞ + τ/γe‖β
∗‖∞/τ , (18)

where

R = max(‖ln(x)‖∞, ‖ln(z)‖∞) + max(ln(n), 1
η‖C‖∞ −

ln(η)). The proof for ‖α∗‖∞ and ‖β∗‖∞ can be directly
obtained from [10]. For the sake of completeness, we provide
the complete proof in appendix B. The proof for ‖z‖∞ is also
straightforward as w ∈ Rn+.

Lemma 2 Updates (αk+1, βk+1) from Algorithm 1 satisfies
the following bound

δk+1 ≤ δk, (19)

where, δk+1 =
(

τ
τ+η

)k‖β∗‖∞. The proof can be directly
extended from [10]. We also provide the proof in appendix
B for the self-sufficiency of this article.

Lemma 3 Update zk+1 from Algorithm 1 satisfies the
following,

zk+1 − z∗ =
τ

γ

(
e−

βk+1

τ − e−
β∗
τ

)
(20)

=
τ

γ
e−

β∗
τ

(
e
β∗−βk+1

τ − 1
)

(21)

‖zk+1 − z∗‖∞ ≤
τ

γ
e
‖β∗‖∞

τ

(
e
‖βk+1−β∗‖∞

τ − 1
)

(22)

≤ τ

γ
e
‖β∗‖∞

τ

[
eτ
(

τ
τ+η

)k
‖β∗‖∞ − 1

]
(23)

Lemma 4 The measures α and β are empirically observed.
Let the empirical observations be represented as α̂ and β̂. In
this lemma, we show that the absolute deviation made by the
approximation of α and β with α̂ and β̂ given by,

|E[h(α∗, β∗, z∗)]− h(α̂, β̂, ẑ)| ≤ 2B, (24)

where (α∗, β∗, z∗) is the optimal solution, and B =
max(ηe(‖α‖∞+‖β‖∞)/η, γ‖z‖∞ + τe‖β‖∞/τ ).

We first show that h(.) is Lipschitz continuous.

∇αh(α, β, z) = e
αi
η

∑
j

e(βj−Cij)/η − xie−
αi
τ (25)

≤ e‖α‖∞
∑
j

e‖β‖∞/η (26)

≤ ne(‖α‖∞+‖β‖∞)/η (27)

∇zh(α, β, z) = τe−βi/τ + γ(zi − wi) (28)

≤ γzi + τe−βi/τ (29)

≤ γ‖zi‖∞ + τe‖βi‖∞/τ (30)

Thus,

∇h(α, β, z) ≤ max(ne(‖α‖∞+‖β‖∞)/η, γ‖z‖∞ + τe‖β‖∞/τ )
(31)

Now we show the proof.

E[h(α∗, β∗, z∗)]− h(α̂, β̂, ẑ) (32)
= E[h(α∗, β∗, z∗)]− h(α∗, β∗, z∗)+ (33)

h(α∗, β∗, z∗)− h(α̂, β̂, ẑ)
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The last two components of Equation 33 is non-positive as
α̂, β̂, ẑ are only empirical minimizers. Thus, we obtain,

|E[h(α∗, β∗, z∗)]− h(α̂, β̂, ẑ)| ≤ (34)
sup
α,β,z

|E[h(α, β, z)]− h(α, β, z)|

Using [51], [52], we get

|E{h(α∗, β∗, z∗)} − h(α̂, β̂, ẑ))| ≤ 2B (35)

IV. DISCUSSION

In this section, we discuss about an alternate formulation
using l2 measure in place of KL divergence.

min
Π,z
〈Π, C〉+ η〈Π, ln Π〉+ τ‖Π1− x‖22 + τ‖Π>1− z‖22+

λ

2
‖w − z‖22.

We can directly solve for Π and z in the following manner.
In order to obtain Π, we minimize

min
Π
〈Π, C〉+η〈Π, ln Π〉+ τ

2
‖Π1−x‖22 +

τ

2
‖Π>1−z‖22. (36)

The derivative of Equation 36 with respect to Π is given
by,

C+τΠ11>−τx1>+τ11>Π−τ1z>+η11>+η ln Π. (37)

Here, gradient descent can be performed to obtain Π. To obtain
z, we minimize,

τ

2
‖Π>1− z‖22 +

λ

2
‖w − z‖22. (38)

Taking derivative with respect to z gives,

Π>1 + λ(w − z), (39)

and equating to zero, we get,

z = w +
Π>1

λ
(40)

We can iteratively solve for Π and z using Equations 37
and 40 until convergence.

V. EXPERIMENTAL RESULTS

A. Implementation Details

We implemented the proposed method in Pytorch frame-
work. In case of MNIST and Fashion-MNIST, we use the
architecture proposed in [4]. For CIFAR-10, we used the
Resnet-18 pre-trained model available at [53]. MNIST model
obtains an accuracy of 98.7% on clean examples, Fashion-
MNIST model achieves an accuracy of 90.13%, and, CIFAR-
10 model obtains an accuracy of 94.7% on clean examples.
We use the cost matrix obtained using lp norm between (i, j)
and (k, l) as (|i − j|p + |k − l|p)1/p co-ordinates. We use
γ = 0.5, η = 0.001, τ = 0.01, α = 0.02, p = 1. The number
of PGD steps and Sinkhorn iterations is set to 10 each. In case
of adversarial training, we set PGD steps to 20 as there are
no imperceptibility constraints. Since we use an unbalanced

OT, the distance is not comparable with that of [4] or [5].
Thus, we normalize B(α, β) such that 1>B(α, β)1 = 1. For
convergence, we use the number of Sinkhorn iterations and
B � C ≤ ε = 0.2. We use an SGD optimizer with a learning
rate = 0.01, momentum = 0.9, and weight decay = 5×10−4 for
adversarial training for MNIST and a learning rate = 3×10−4

for Fashion-MNIST. We run the model for 40 and 60 epochs
respectively for MNIST and Fashion-MNIST.

We use ResNet-50 [54] for Tiny ImageNet [55]. We use
Adam optimizer with a learning rate of 0.0001, 2 PGD steps
and train for 50 epochs. The nominal accuracy is 61.6%. In
case of adversarial training, we also apply adversarial training
practices mentioned in [30], [31]. Due to longer running time
per epoch, we limit the adversarial training for 50 epochs.
Following [30], we add the regularizer,

LKL = KL(Φ(x),Φ(z)),

where, KL denotes KL divergence, Φ denotes ResNet-50
feature extractor, x denotes clean sample and z denotes
adversarial sample. The overall loss function is given by,

L = λLCE(Φ(x), y) + (1− λ)LKL,

where λ = 0.9 and LCE is the cross-entropy loss. Since
random perturbation of x leads to better adversarial training
[31], we also perform x = x+ 0.01N (0, I).

We compare the nominal accuracy (NA) and attack accuracy
(AA) of [4], [5] and ours. NA is computed over clean test
samples and AA is computed over adversarially attacked test
samples. NA is the ratio of correctly classified clean test
samples to the number of total clean test samples. AA is
the ratio of correctly classified adversarial test samples to the
number of total adversarial test samples.

B. Adversarial attack performance

In Table I we compare the nominal accuracy (NA) and
attack accuracy. It is clearly evident that our attack degrades
the performance of all the models including standard and
adversarially trained ones. For MNIST and CIFAR-10, we use
both standard as well as adversarial trained models provided
by Wong et al. and Hu et al..

TABLE I: Nominal and attack accuracy against standard model

Method MNIST CIFAR-10 Fashion-MNIST
NA AA NA AA NA AA

Wong et al. [4] 97.28 0.0 81.68 0.67 - -
Hu et al. [5] 92.77 4.66 84.38 0.0 - -

Standard 98.89 1.7 94.76 0.0 90.13 0.0

In case of Tiny ImageNet, the attack accuracy is 3.35%. We
also show the examples of clean and attacked images in Figure
2. In addition, our model only takes 3.2 minutes compared
to 43 minutes of Hu et al. to completely break the MNIST
dataset on a Tesla V100 16GB machine.

We compare our proposed attack against state-of-art attacks
in Table II. We can observe that our attack performs well in
both the datasets.
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Fig. 2: Original (top row) and attacked (bottom row) images
from Tiny ImageNet

TABLE II: Performance of our attack on standard models of
MNIST and Fashion-MNIST.

Attack MNIST F-MNIST
Wong et al. 0.0 -
Hu et al. 4.66 -
PGDL2 [20] 37.93 27.24
CW [21] 4.25 10.0
TPGD [30] 5.01 11.95
FFGSM [31] 26.64 12.19
MIFGSM [27] 3.16 10.37
AutoAttack [26] 54.2 25.75
M-DI2FGSM [33] 9.92 17.14
Ours 1.7 0.0

C. Sensitivity Analysis

We show the sensitivity analysis in Figure 3. The image
enclosed in red box is the original image. The last three images
of first row highlight the effect of increasing τ while keeping η
and γ fixed. As observed, changing τ ∈ [.01, 1] does not have a
significant impact. Second row shows the effect of increasing
η. Here, larger value of η = 0.01 leads to large distortion
and the attacked image is severely distorted. Whereas, smaller
values generate images closer to original image. Last row
demonstrates the effect of γ. Lower value of γ = 0.005
leads to blurring and reduction in brightness. However, higher
values lead to imperceptible distortion. Thus, we see that the
attack is not highly sensitive to these parameters. Further, we
use the same parameter setting for all the adversarial attack
experiments.

D. Adversarial Robustness

In Figure 6, we show the adversarial accuracy vs. 1-
Wasserstein distance. Here we compare L-inf robust model,
standard model and our adversarially trained model against
the attack proposed in Hu et al.. We can observe that our
model outperforms the L-inf robust model and the margin
increases as the distance increases. Thus, we can claim that
our model demonstrates a high robustness against Wasserstein
space attack. The standard MNIST model performs very poor
and the accuracy against adversarial samples drops drastically
to about 0% within a distance of 0.5. In case of Fashion-
MNIST in Figure 7, we observe a similar phenomenon and our
model exhibits much higher robustness compared to standard
model.

Fig. 3: Original image. First row shows the effect of τ = .01,
.1, 1 with η = 0.001, γ = 0.5. Second row is obtained with
η=0.0001, .0005, .005, .01 and τ = 0.01, γ = 0.5. Last row is
obtained with γ=.005, .05, 5, 50 and τ = 0.01, η = 0.001.

In Table III we show a comparison of the defense against
several attacks. We use the code provided in [56] to perform
the attacks. In order to compare with L∞ robust model and
adversarial robust models of [4], [5], we perform adversarial
attacks with ε ≤ .3. It can be observed that our model is
highly robust against various types of attacks when compared
to adversarial robust models of L∞ and [4], [5]. This is due
to the fact that the proposed attack is very strong and thus
when the model is trained using adversarial examples, the
boundaries learnt resist the attacks robustly. On the other hand,
the standard model does not have any resilience against them.
We observe a similar phenomenon in case of Fashion-MNIST
in Table IV, however, here the model did not perform well
against [21]. In case of Tiny ImageNet, the adversarial trained
model accuracy is 25.15% for adversarial samples and 61.5%
for clean samples. Here, we did not observe a significant drop
in the accuracy against clean samples. This is because of
high weightage for the loss computed against clean samples
compared to the loss for adversarial samples. On the other
hand, a small λ may not lead to convergence.

In Table V we present results for natural perturbations like
translation and rotation. Here we observe that the standard
model performs better compared to other models. While the
models are robust to smaller values of translation, higher
values lead to severe drop in the accuracy. This observa-
tion is consistent with the observations presented by Hu et
al. [5]. The models trained with samples generated using
Wasserstein attack do not exhibit good robustness against
natural perturbations like rotation and translation. In order
to compare the clean and affine transformed images, we
perform Procrustes analysis. We present the results in Table
VI. Procrustes analysis shows that the original and transformed
images admit a high similarity. Further, with increasing degree
of rotation and translation, the dis-similarity increases. This
also leads to reduction in classification performance. We can
also note that translation has higher dis-similarity and the
mis-classification rate is higher in this case. Additionally, we
also include Wasserstein distance between the samples and the
Procrustes transformed samples. We would like to emphasize
that our model takes a global cost matrix, whereas, [4], [5] take
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Original Hu et al. Wong et al. Ours Original Hu et al. Wong et al. Ours

Fig. 4: Original and successful adversarial examples for MNIST and CIFAR-10.

a local cost matrix due to which the distances are distinct.

TABLE III: Performance of our adversarial trained model
against adversarial attacks on MNIST.

Attack Standard L∞ [4] [5] Ours
Before 98.89 98.2 97.28 92.77 98.01
CW [21] 6.2 88.58 94.49 87.49 93.68
TPGD [30] 5.21 39.26 9.57 7.65 96.66
MIFGSM [27] 0.00 0.02 0.00 0.7 90.24
AutoAttack [26] 0.00 0.00 0.00 0.08 85.65
M-DI2FGSM [33] 0.12 0.07 0.03 1.09 91.85

E. Subjective Evaluation
We show the example images obtained by our algorithm

in Figure 4 and analyze the magnified images in Figure 5.
We observe that attack via Hu et al. generates more artefacts
while Wong et al.’ attack reduces the brightness. On the other
hand, our attack appears to be the closest to original image.

TABLE IV: Performance of our adversarial trained model
against adversarial attacks on Fashion-MNIST.

Attack Standard Ours
PGDL2 [20] 27.24 52.2
CW [21] 10.0 10.0
TPGD [30] 11.95 45.41
FFGSM [31] 12.19 46.66
MIFGSM [27] 10.37 46.35
DeepFool [32] 24.0 35.41
AutoAttack [26] 25.75 50.22
M-DI2FGSM [33] 17.14 48.71

We show the example original, adversarial and error images
obtained by our algorithm in Figure 8. The first row shows
the clean samples, middle row shows adversarial samples and
the third row shows the error between clean and adversarial
samples. It is evident that the distortion introduced due to
attack is imperceptible in adversarial images. Here, we ob-
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Fig. 5: Magnified images. Original, Hu et al., Wong et al. and Ours

TABLE V: Accuracy against natural perturbation

Method MNIST Fashion-MNIST
Translation Rotation Translation Rotation

5% 15% 20% 10◦ 20◦ 30◦ 5% 15% 20% 10◦ 20◦ 30◦

Wong et al. [4] 95.47 82.88 45.83 96.61 95.14 92.09 - - - - - -
Hu et al. [5] 91.15 82.37 50.018 91.7 89.03 84.64 - - - - - -

Standard 97.75 87.03 47.85 98.48 97.39 93.67 84.44 68.41 39.57 84.44 70.32 57.76
Ours 96.09 82.36 42.8 97.51 95.95 92.74 84.15 66.99 38.36 76.15 68.3 58.03

TABLE VI: Procrustes dis-similarity (d) measure for rotation and translation.

Transformation MNIST F-MNIST
d Ours [4] [5] AA d Ours [4] [5] AA

R 10◦ 0.005 0.060 0.015 0.011 97.51 0.004 0.023 0.014 0.011 76.15
20◦ 0.011 0.105 0.080 0.053 95.95 0.007 0.042 0.032 0.028 68.3
30◦ 0.016 0.144 0.137 0.118 92.74 0.01 0.060 0.053 0.044 58.03

T 5% 0.016 0.109 0.068 0.059 96.09 0.021 0.062 0.028 0.027 84.14
15% 0.094 0.360 0.091 0.087 82.36 0.101 0.184 0.118 0.109 66.99
20% 0.155 0.497 0.161 0.150 42.8 0.150 0.248 0.169 0.145 38.36

Fig. 6: MNIST Fig. 7: F-MNIST

serve that attack looks like distortion in shape of localized
patches. This is because of inherent nature of attack which
is performed by pixel mass movement. The major movement
happens locally as the cost of moving to large distance is very
high. Thus most of the large distance movement is restricted.
Further, the maximum values of error occurs in foreground
only. This may be due to the fact that the foreground is much
brighter compared to background. A similar phenomenon can
be observed in Fashion-MNIST dataset also.

F. Targeted Attack

Targeted attacks can also be performed by presenting the
target labels to our model. In Figure 9, we see that for
different target labels, the attacked images look similar to the
clean image itself. Thus, there are no visible artefacts. In our

Fig. 8: Clean image, adversarial image and error between clean
and adversarial image for MNIST and Fashion-MNIST.

experiments, we observe that targeted attacks require more
iterations compared to untargeted attacks which may also lead
to slightly more noise.

VI. CONCLUSION

In this paper, we present a novel technique for performing
adversarial attack on images. We formulate the objective with
the goal to obtain an adversarial sample which is closer to the
sample obtained from gradient step in l2 sense and lies in a
Wasserstein ball with respect to the original sample. Towards
this, we propose a combined objective function using an
unbalanced optimal transport technique. We analytically solve
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Fig. 9: Targeted attack.

for the adversarial sample in the dual domain. Our method
demonstrates that it can easily defeat the standard as well as
adversarial robust models against Wasserstein space attacks.
Further, our adversarial defense also proves significantly better
than other robust models against different set of attacks. We
also show that the adversarial images generated by our model
does not suffer from artefacts as in case of other Wasserstein
space attacks.
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APPENDIX A
PARAMETERS OF ADVERSARIAL ATTACKS

We provide the parameter settings for various attacks in
Table VII. For CW [21] attack, c = 5 and κ = 0 is used.
Other parameters for all the attacks are set to default. For
AutoAttack [26] we use L2 norm.

TABLE VII: Parameter settings

Attack ε α Steps
PGDL2[20] 0.2 0.2 400
TPGD [30] 0.2 0.2 10
FFGSM [31] 0.2 0.2 -
MIFGSM [27] 0.2 0.2 10
DeepFool [32] - - 2
AutoAttack [26] 0.2 - -
M-DI2FGSM [33] 0.2 0.2 2

APPENDIX B
PROOFS

1) Proof of Lemma 1:: Let (α∗, β∗) be the optimal solution
of Equation 7. Then, the sup norms of the optimal solution
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‖α∗‖∞, ‖β∗‖∞ and ‖z‖∞ are bounded by,

max{‖α∗‖∞, ‖β∗‖∞} ≤ τR (41)

‖z‖∞ ≤ ‖w + τ/γe−min(β∗/τ)‖∞
= ‖w‖∞ + τ/γe‖β

∗‖∞/τ ,

where
R = max(‖ln(x)‖∞, ‖ln(z)‖∞) +
max(ln(n), 1

η‖C‖∞ − ln(η)).

α∗i
τ

= lnxi − ln

( n∑
j=1

e
α∗i+β

∗
j−Cij
η

)
, (42)

c = lnxi − ln

(
e
α∗i
η

n∑
j=1

e
β∗j−Cij

η

)
, (43)

= lnxi −
α∗i
η
− ln

( n∑
j=1

e
β∗j−Cij

η

)
.

The third term of RHS in Equation 42 can be written as,

ln

( n∑
j=1

e
β∗j−Cij

η

)
≥ ln

( n∑
j=1

min
j
e
β∗j−Cij

η

)
, (44)

≥ ln(n) + min
j

β∗j − Cij
η

,

≥ ln(n)− ‖β
∗‖∞
η

− ‖C‖∞
η

.

Similarly, we can show that,

ln

( n∑
j=1

e
β∗j−Cij

η

)
≤ ln(n) +

‖β∗‖∞
η

. (45)

Using Equations 44 and 45, we obtain,

∣∣∣∣∣ ln
( n∑
j=1

e
β∗j−Cij

η

)∣∣∣∣∣ ≤ ‖β∗‖∞η +max

(
ln(n),

‖C‖∞
η
−ln(n)

)
.

(46)
Now, from Equation 42, we can write,

∣∣∣∣α∗iτ +
α∗i
η

∣∣∣∣ ≤ |ln(xi)|+

∣∣∣∣∣ ln
( n∑
j=1

e
β∗j−Cij

η

)∣∣∣∣∣ (47)

≤ |ln(xi)|+
‖β∗‖∞
η

+ max

(
ln(n),

‖C‖∞
η
− ln(n)

)
.

Using the fact that ln(xi) ≤ max{ln(‖x‖∞), ln(‖z‖∞)} ,
we obtain,∣∣∣∣α∗iτ +

α∗i
η

∣∣∣∣ ≤ max{ln(‖x‖∞), ln(‖z‖∞)}+ (48)

‖β∗‖∞
η

+ max

(
ln(n),

‖C‖∞
η
− ln(n)

)
.

Now taking ‖α∗‖∞ ≥ ‖β∗‖∞ without loss of generality,
we get,

‖α∗‖∞
τ

≤ max{ln(‖x‖∞), ln(‖z‖∞)}+ (49)

max

(
ln(n),

‖C‖∞
η
− ln(n)

)
= R.

which proves Lemma 1.
2) Proof of Lemma 2:: Updates (αk+1, βk+1) from Algo-

rithm 1 satisfies the following bound

δk+1 ≤ δk, (50)

where, δk+1 =
(

τ
τ+η

)k‖β∗‖∞. The proof can be directly
extended from [10].

αk+1
i =

[
αki
η

+ ln(xi)− ln(rki )

]
ητ

η + τ
, (51)

=

[
αki
η

+ ln(xi)− ln(r∗i ) + {ln(r∗i )− ln(rki )}
]
ητ

η + τ
.

(52)

This can be written as,

αk+1
i − α∗i =

[
η ln

(
r∗i
rki

)
− (α∗i − αki )

]
τ

τ + η
. (53)

From [10], we know that,

|αk+1
i − α∗i | ≤ max

j
|βkj − β∗j |

τ

τ + η
. (54)

Thus,

‖αk+1 − α∗‖∞ ≤
τ

τ + η
‖βk − β∗‖∞. (55)

Similarly,

‖βk+1 − β∗‖∞ ≤
τ

τ + η
‖αk − α∗‖∞. (56)

Combining equations 55 and 56,

‖αk+1 − α∗‖∞ ≤
(

τ

τ + η

)2

‖αk−1 − α∗‖∞. (57)

By induction,

‖αk+1 − α∗‖∞ ≤
(

τ

τ + η

)k
‖β0 − β∗‖∞, (58)

=

(
τ

τ + η

)k
‖β∗‖∞ (59)

Similarly, we can show for ‖βk+1−β∗‖∞. This proves Lemma
2.


