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Abstract—Wasserstein metric based adversarial attacks
have attracted a great interest in the recent past. Even
though they exhibit strong attacks, surprisingly, they have
not been investigated for defense. In this work, we demon-
strate that barycenters computed in Wasserstein space can
act as a measure of defense against adversarial attacks. We
compute the barycenter using marginals obtained from the
given image and demonstrate its effectiveness in defense
even without any adversarial training. We further analyse
the barycenters using GradCam to understand their de-
fensive characteristics. Elaborate experiments on MNIST,
Fashion-MNIST, CIFAR-10 and CIFAR-100 demonstrate
a significant increase in the robustness of victim classifiers.

Index Terms—Barycenter, Dual Wasserstein, Adversar-
ial defense.

I. INTRODUCTION

DEEP learning systems have shown impressive per-
formance in various applications. However, these

systems are vulnerable to adversarial perturbations [1]–
[3]. In order to counter these attacks, several defense
mechanisms have also been proposed.

In one of the early works, Szegedy et al. [4] formu-
lated the adversarial attack as an optimization problem
and obtained the adversarial sample using L-BFGS.
Several adversarial attacks have been proposed since
Szegedy’ work [5], [6]. In particular, a vast majority of
attacks are proposed using lp norm only. On the other
hand, strong defense measures have been studied in [1],
[7]–[9].

Different from lp norm based attacks, Wasserstein
distance based attacks have also been studied in [10],
[11]. Unlike pixel-wise distances in lp space, Wasser-
stein distance incorporates the geometry of the vectors
between which the distance is computed. This makes the
Wasserstein space more attractive as minor transforma-
tions do not lead to large distances in contrast to other
metrics such as Euclidean distance. However, defense

based on Wasserstein distance is not yet explored and
this is the focus of our work.

In this work, we propose a barycenter based defense
in a classification setting. Our hypothesis is that the
attacks designed in lp space may not be effective in the
Wasserstein space. In order to verify this, we find the
barycenter of the given image using marginals derived
from the given image itself. We find that the barycenter is
very effective in defending against Linf and L2 attacks.
We also investigate the gradcam [12] images where we
demonstrate that the barycenter actually possesses traits
of the original image itself which is the reason for
effectiveness of barycenter against attacks.

II. RELATED WORKS

Adversarial Attacks Some of the robust attacks are
iterative FGSM (Kurakin et al. [6]), PGD (Madry et
al. [7]), Carlini and Wagner [13] attacks, Jacobian based
attack (Papernot et al. [14]), physical attack (Athalye et
al. [15]), Autoattack (Croce and Hein [2]), momentum
based iterative FGSM (Dong et al. [16]), single pixel
attack (Su et al. [17]). These attacks are primarily
focused in lp domain. Attacks in Wasserstein space have
also been explored in [10], [11], [18], [19].

Adversarial Defense In response to adversarial at-
tacks, adversarial defense has been proposed to defend
the victim models. One of the best defense approach
is adversarial training [4], [5], [20]. Madry et al. [7]
formally studied adversarial training and proposed that
such training allows network to defend well against
first order adversary. Adversarial logit pairing uses a
pair of logits from clean and adversarial examples
to defend against adversarial samples [21]. Prominent
theoretical studies include TRADES [22] which prove
the bounds based on additional regularization term that
minimizes the difference in prediction between clean and
adversarial samples. In [1], Wong et al. proposed to
effectively combine FGSM and random initialization to



demonstrate better adversarial training. In [23], Zhang
et al. proposed that adversarial data should not have
a uniform importance during training and their effect
should be geometrically weighted. GAN based defense
approach has been proposed in [24].

Data augmentation has also shown a significant per-
formance improvement against adversarial examples [9],
[25]–[27]. Other techniques include enhancement and
restoration of images [28], [29], distillation [30], ReLU
[31], gradient regularization [32].

Wasserstein Barycenter In the following we discuss
Wasserstein distance and barycenter. The entropic regu-
larized Wasserstein distance is given as [33],

Wη(x, y) = min
Π
〈Π, C〉+ η〈Π, lnΠ〉

s.t. Π1 = x,ΠT 1 = y,

where, x and y denote probability simplexes, Π denotes
the transport plan, C denotes the cost matrix, 1 denotes a
vector of ones, η is a regularization parameter, and 〈., .〉
denotes inner product.

Let there be N marginals qk, k = 1, 2, ..., N , and
barycenter weights βk. Then the barycenter p is the
solution of the following objective [34],

min
p

N∑
k=1

βkWη(p, qk).

The regularized version of the barycenter is given as,

min
p

N∑
k=1

βkWη(p, qk) + J(p)

where J(p) can be an l2 regularizer, for example, J(p) =
λ
2‖p‖

2.

III. METHODOLOGY

We discuss our proposed objective formulation in
this section. We first formulate a regularized barycenter
problem and derive a solution to obtain the barycenter.
Let the clean or adversarial sample be x. Let A be a
linear operator, then we define the marginal of x as
qk = Akx. In our experiments, we use rotation and
translation as the linear operator. Then the regularized
Wasserstein barycenter is given as,

min
p

N∑
k=1

βkWη(p, qk) + J(p), (1)

where J(p) = .5θ‖x− p‖2.
We choose a l2 regularizer different from the regu-

larizer in [34]. This is because barycenter computation

can be unstable when a regularizer is only focusing on
p. In our objective function Equation 1, we try that the
barycenter is also close to the given sample x in the l2
space and thus we use J(p) = .5θ‖x − p‖2. This helps
in obtaining a barycenter that can both defend against
attacks and does not diverge with increasing iterations.

In order to obtain p, we solve the dual problem of
Equation 1 given by,

min
(uk)Nk=1,v

N∑
k=1

βkH
∗
qk(uk) + J∗(v) (2)

where H∗qk(uk) = γ[E(qk) + 〈qk, lnKαk〉] and E(qk) =

−
∑

i q
i
k, αk = euk/γ .

We can expand J∗(v) as,

J∗(v) = sup
s

(v>s− J(s))

= −‖v‖2/2γ + v>w.

The solution for Equation 2 is given in Algorithm 1.

Algorithm 1: Regularized Barycenter
Input: (uk, v)← 1 a vector of ones with

dimension n× 1 , N marginals qk,
k = 1, 2, ..., N , βk = 1/N be the
barycenter weights, K = e−C/γ , γ =
0.02, θ = 1e5, τ = 0.2

Output: p = 1
N

∑
k∇H∗qk(uk)

while max iterations do
uN

def.
= − v

βN
−
∑N−1

k=1
βk

βN
uk

∇H∗qk(uk) = αk �K qk
Kαk

∇F ((uk)
N
k=1, v) =

[(
βk∇H∗qk(uk)−

∇H∗qN (uN )
)N−1

k=1
,−∇H∗qN (uN )

]
xl ← ((uk)

N−1
k=1 , v)

xl+1 = ProxτJ∗(x
l − τ∇F (xl))

xl+1 ← xl−τ∇F (xl)−τw
1−τ/θ

end

Here, ProxτJ∗(v)
def.
= arg minv′ .5‖v−v′‖2 + τJ∗(v′).

IV. EXPERIMENTAL RESULTS

A. Implementation Details

The proposed method is implemented in Pytorch
framework. In case of MNIST and Fashion-MNIST, we
use the architecture proposed in [10]. For CIFAR-10, we
use the Resnet-18 pre-trained model available at [35].
MNIST model obtains an accuracy of 99.0% on clean
examples, Fashion-MNIST model achieves an accuracy
of 90.0%, and, CIFAR-10 model obtains an accuracy



of 94.8% on clean examples. For CIFAR-100, we use
Resnet-32 with clean sample accuracy of 70.14%. We
use the local cost matrix [10] obtained using l1 norm
between (i, j) and (k, l) as (|i−j|+|k−l|) co-ordinates.
The size of the local cost matrix is 7x7.

B. Adversarial attack performance

In Table I, we show the performance of clean samples,
barycenters and adversarial samples obtained using L∞
attacks. We compute the barycenters in the following
two settings. First, we use 6 marginals comprising of
the given image (attacked or clean), ±2◦ rotation of
the given image, ±3◦ rotation of the given image and
translation by 3 pixels. We refer this setting as B6
in Table I. In the second setting, we use the given
image (attacked or clean), ±2◦ rotation of the given
image, and translation by 3 pixels. We refer this as
B4. We tried with higher degrees of rotation, however,
too much rotation itself degrades the model'performance.
Therefore, a rotation of utmost ±3◦ is considered. The
choice of translation is also motivated by common data
augmentation methods.

TABLE I
PERFORMANCE OF VICTIM MODEL AGAINST BARYCENTER
COMPUTED USING l∞ ADVERSARIAL SAMPLES AND CLEAN

SAMPLES (IN %). ε = 0.17.

Dataset L∞ Barycenter Clean Barycenter
B6 B4 B6 B4

CIFAR-10 0 53.8 55.7 94.8 88.4 90.5
MNIST 0.5 90.3 85.9 99.0 98.9 98.3

F-MNIST 0 67.7 66.9 90.0 89.8 89.7
CIFAR-100 0 21.2 22.3 70.2 60.5 64.6

It can be observed that the accuracy under L∞ is
almost zero. Whereas, in case of barycenters, the ac-
curacy is very high. A similar trend is observed for all
datasets as well as for both attacked and clean images.
Thus, barycenters can achieve an accuracy close to that
of victim model in case of clean images, and also defend
the model under adversarial attack.

We show the performance against several attacks in
Tables II and III. We use Foolbox [36], [37] to perform
the attacks. We report the results in terms of attack
accuracy (AA) and barycenter accuracy (BA). AA is
the ratio of correctly classified attacked samples to that
of the total number of samples. It is computed over
the complete test set. We can observe that AA is very
low when the adversarial samples are presented to the
victim model. On the other hand, when we test using the
barycenters generated from these attacked images, the

accuracy is high. We denote this accuracy as Barycentric
Accuracy (BA).

TABLE II
PERFORMANCE AGAINST ATTACKS ON MNIST. ε = 1 FOR

L2PGD AND L2CARLINIWAGNER. ε = 0.1 FOR LINFPGD, FGSM,
LINFDEEPFOOL.

Attack AA (in %) BA (in %)
L2PGD [7] 43.59 62.03
L2Carliniwagner [13] 63.19 96.07
Linfpgd [7] 16.36 31.75
FGSM [5] 71.75 74.96
Linfdeepfool [20] 42.52 94.69
AutoAttack [2] 9.13 28.12

TABLE III
PERFORMANCE AGAINST ATTACKS ON FASHION-MNIST. ε = 1
FOR L2PGD AND L2CARLINIWAGNER. ε = 0.1 FOR LINFPGD,

FGSM, LINFDEEPFOOL.

Attack AA (in %) BA (in %)
L2PGD [7] 9.45 14.38
L2Carliniwagner [13] 14.14 80.44
Linfpgd [7] 38.39 46.99
FGSM [5] 45.88 51.6
Linfdeepfool [20] 42.59 81.05
AutoAttack [2] 0.6 2.75

We present the results for CIFAR-10 and CIFAR-
100 in Tables IV and V, respectively. In both these
cases, we find that our model exhibits a strong defense
against attacks like L2Carliniwagner [13] and Linfdeep-
fool [20]. Further, as AutoAttack [2] is quite powerful,
it is hard to achieve a sound robustness against this
attack without doing any adversarial training. We also
performed experiments by increasing ε to 0.3 for MNIST
and 16/255 for CIFAR-10, however, both attack and
barycenter accuracies are low in this case.

Although methods involving adversarial training such
as [7], [22] achieve a high accuracy compared to that of
ours, the proposed method opens up a new direction for
exploring defense without any training.

C. Sensitivity analysis

We show the sensitivity analysis in Figure 1. The im-
age enclosed in red box denotes the barycenter obtained
from the settings used for all the experiments. We fix θ
and τ , and increase γ to analyse the effect on barycenter.
This is shown in the last three columns of first row.
We can see that increasing γ deteriorates the quality
of the barycenter which can have a negative impact on
barycentric accuracy. Similarly, the effect of changing θ



TABLE IV
PERFORMANCE AGAINST ATTACKS ON CIFAR-10. ε = 0.5 FOR

L2PGD AND L2CARLINIWAGNER. ε = 8/255 FOR LINFPGD,
FGSM, LINFDEEPFOOL.

Attack AA (in %) BA (in %)
L2PGD [7] 2.65 32.51
L2Carliniwagner [13] 0.06 83.07
Linfpgd [7] 0 14.62
FGSM [5] 37.48 43.11
Linfdeepfool [20] 1.81 78.11
AutoAttack [2] 0 10.15

TABLE V
PERFORMANCE AGAINST ATTACKS ON CIFAR-100. ε = 0.5 FOR

L2CARLINIWAGNER. ε = 8/255 FOR LINFDEEPFOOL.

Attack AA (in %) BA (in %)
L2Carliniwagner [13] 0.01 55.31
Linfdeepfool [20] 0 54.46
AutoAttack [2] 0 4.54

and τ is given in second and third row respectively. We
observe that decreasing θ leads to blurring while increas-
ing θ generates reasonable quality of barycenter. Further,
a large τ also deteriorates the quality of barycenter.

Fig. 1. First row: γ = .02, .01, 1, 5 with θ = 1e5, τ = 0.2. Second
row: γ=0.02, θ = 1e3, 1e4, 1e6, 1e7 and τ = 0.2. Last row: γ=.02,
θ = 1e5 and τ = 0.005, 0.05, 1, 5.

D. Subjective Evaluation

We show the barycenters in Figure 2. In the figure
we can observe that the barycenters obtained under B6
setting are close to the respective original images. In
Figure 3, we show the gradcam heatmaps. We can ob-
serve that the heatmaps for barycenters are closer to the
heatmaps of respective original images compared to that
of attacked images. Especially, in case of MNIST and
Fashion-MNIST, we can clearly observe that heatmaps of

the clean images and respective barycenters show a high
degree of similarity. In case of CIFAR-10, the heatmap
of attacked image is very different from the heatmap of
clean image indicating that the model may not be able to
correctly classify the attacked image. Thus, empirically
we can observe that the barycenter can mitigate the L∞
attacks effectively without any training.

Fig. 2. Clean image, Barycenter (B6) for MNIST, CIFAR and
Fashion-MNIST.

Clean Heat Linf. Heat Bar. Heat

Fig. 3. Gradcam heatmaps of clean images, L∞ attacked images and
Barycenters of MNIST, CIFAR-10 and Fashion-MNIST.

V. CONCLUSION

We present a novel adversarial defense technique
and demonstrate that models can be defended without
the need of any adversarial training. We formulate a
Wasserstein barycenter objective and analytically solve
for the barycenter. In order to obtain the barycenter,
we use the given image and derive its marginals using
rotation and translation. Our empirical analysis using
GradCam show that the barycenters possess the traits of
clean images and thus have a better probability of being
correctly classified. We perform elaborate experiments
to qualitatively and quantitatively show that barycenters
exhibit a strong defense against a variety of adversarial
attacks.
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[34] M. Cuturi and G. Peyré, “A smoothed dual approach for
variational wasserstein problems,” SIAM Journal on Imaging
Sciences, vol. 9, no. 1, pp. 320–343, 2016.

[35] K. Liu, “Pytorch-cifar,” https://github.com/kuangliu/
pytorch-cifar.

[36] J. Rauber, W. Brendel, and M. Bethge, “Foolbox: A python
toolbox to benchmark the robustness of machine learning
models,” in Reliable Machine Learning in the Wild Workshop,
34th International Conference on Machine Learning, 2017.
[Online]. Available: http://arxiv.org/abs/1707.04131

[37] J. Rauber, R. Zimmermann, M. Bethge, and W. Brendel,
“Foolbox native: Fast adversarial attacks to benchmark
the robustness of machine learning models in pytorch,
tensorflow, and jax,” Journal of Open Source Software,
vol. 5, no. 53, p. 2607, 2020. [Online]. Available: https:
//doi.org/10.21105/joss.02607


