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Abstract

Advancements in generative models have sparked significant interest in generating
images while adhering to specific structural guidelines. Scene graph to image generation
is one such task of generating images which are consistent with the given scene graph.
However, the complexity of visual scenes poses a challenge in accurately aligning ob-
jects based on specified relations within the scene graph. Existing methods approach
this task by first predicting a scene layout and generating images from these layouts
using adversarial training. In this work, we introduce a novel approach to generate im-
ages from scene graphs which eliminates the need of predicting intermediate layouts.
We leverage pre-trained text-to-image diffusion models and CLIP guidance to translate
graph knowledge into images. Towards this, we first pre-train our graph encoder to align
graph features with CLIP features of corresponding images using a GAN based train-
ing. Further, we fuse the graph features with CLIP embedding of object labels present
in the given scene graph to create a graph consistent CLIP guided conditioning signal.
In the conditioning input, object embeddings provide coarse structure of the image and
graph features provide structural alignment based on relationships among objects. Fi-
nally, we fine tune a pre-trained diffusion model with the graph consistent conditioning
signal with reconstruction and CLIP alignment loss. Elaborate experiments reveal that
our method outperforms existing methods on standard benchmarks of COCO-stuff and
Visual Genome dataset. Our code, and instructions to reproduce the results can be found
in https://anonymous.4open.science/r/GANDiffuCLIP-D9E8.

1 Introduction
Scene graph represents a visual scene as a graph where nodes correspond to objects and
edges represent relationships or interactions between these objects. Improved generative
models now allow users to generate high quality images where they can control the style,
structure or layout of the synthesised images. Such conditional image generation allow users
to guide the generation using text [23, 26], segmentation mask [20], class labels [3], scene
layout [10, 38], sketches, stroke paintings [18], and such more conditional signals. In partic-
ular, use of text as a conditioning modality offers a versatile approach, allowing for diverse
combinations of inputs, encompassing intricate and abstract concepts. However, leveraging
text for conditioning is not without challenges. Natural language sentences tend to be lengthy
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and loosely structured, relying heavily on syntax for semantic interpretation. The inherent
ambiguity in language, where different sentences may convey the same concept, poses a risk
of instability during training. This becomes particularly apparent in scenarios where precise
description constraints are crucial. In this context, relying solely on text representations for
a specific scene may prove to be insufficient.

Motivated by promising results of conditional generation and limitation of text as a con-
ditional signal, in this work we propose a novel method to generate images from scene
graphs. First introduced by [12], scene graph to image generation is a task of generating
images using a set of semantic object labels and underlying semantic relationships among
these objects. Most of the existing works follow a two stage architecture where they first
generate a scene layout and use GAN to synthesize realistic images from these scene layouts
[1, 9, 12]. Object nodes of scene graph is mapped to bounding boxes in the layout and the re-
lationships are signified by the spatial structure of the layout. While these scene layouts can
be effective in representing spatial relationships in the scenes, they fail to capture non-spatial
complex relationships among objects. Translating scene graphs to accurate layouts and lim-
iting representation capabilities of these layouts results in images inconsistent with the input
scene graph. To overcome the limitations of existing methodologies, we propose to learn an
optimized intermediate graph representation while eliminating the need of predicting scene
layouts.

We first employ a GAN-based CLIP [22] alignment module to train our graph encoder.
This module instructs the graph encoder to generate graph embeddings that closely resem-
ble the visual features of corresponding images in the CLIP latent space. To construct an
effective conditioning signal to harness the strong semantic understanding offered by dif-
fusion model, we fuse output of graph encoder with semantic label embedding of objects
present in the scene graph. We demonstrate the effectiveness of our method using estab-
lished benchmarks like Visual Genome[14] and COCO-stuff [2]. Comparisons with current
state-of-the-art methods reveal superior quantitative and qualitative results. We can sum-
marise our contributions as follows:

• Our work for the first time leverages a pre-trained diffusion model for the task of image
generation from scene graph without requiring an additional text prompt from the user.

• We propose a novel methodology to learn an effective graph representation, elimi-
nating the need of predicting intermediate layouts to synthesize images. We use this
graph representation to construct a suitable conditioning signal for text-to-image dif-
fusion model.

• We propose a training strategy that optimizes our scene graph input for diffusion mod-
els. We propose a GAN-based CLIP alignment module to guide our scene graph em-
beddings to leverage the semantic knowledge of text-to-image diffusion model.

2 Related Works
Diffusion as generative model. The introduction of diffusion models by [30] marked a no-
table approach to image generation. These models operate by learning the reverse process of
the forward diffusion, where input is transformed into Gaussian noise. The denoising process
is implemented using U-net [19] or transformer [34] based models. In order to reduce the
computation and training complexity, [27, 33] introduced diffusion models which operate
in latent space. [3] proposed conditional generation by diffusion using classifier guidance.
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Recent advancements in these latent diffusion models have enabled users to produce diverse
and realistic high quality images conditioned on various factors such as text [23], artistic
style, sketch, pose, and class labels [5]. Diffusion can also be used to generate text [16, 17],
videos [5, 35] and graphs [11]. The conditioning is applied using cross attention mechanism
between output of individual layers of denoising U-net and given conditional signals. Similar
techniques are employed in text-to-image latent diffusion models. [24] uses CLIP latent of
text to condition high quality image generation. [28] uses latent from large language models
such as T5 to condition latent diffusion models. While there has been notable progress in
the diffusion-based conditional image synthesis, there exists a notable gap in the exploration
of image generation from graph-structured data. In this work we explore the capabilities of
text-to-image diffusion models in the task of image generation conditioned on scene graphs.

Image generation from scene graphs. Scene graph represents an image using set of nodes
and edges. Nodes represent objects present in the image and their underlying relationships
are captured by edges. Conventional scene graph to image methods tackle this task by fol-
lowing two stage architecture. At first a scene layout is predicted from graph. Scene layout
represents an image using bounding boxes of corresponding objects present in the image.
Scene layout is then translated into an image using convolution neural network based im-
age synthesis models such as SPADE [21], OC-GAN [32]. This task was first introduced
by [12]. They employ a multi layer graph convolution network [13] to get graph represen-
tation. This graph representation is used to predict object bounding boxes. The boxes are
then used to generate images using cascaded refinement network. Generation is guided by
GAN-based setup where a discriminator is employed to generate realistic images. Following
[12] subsequent works adopt the two stage approach combined with GAN-based generation.
[1] provides a way to control style of generated objects by providing a module to capture
the style information of objects. [7] use canonicalization for scene graph representation
before translating it into scene layouts. This enhances the graph representation by incorpo-
rating supplementary information for semantic equivalence. [9] introduces an overlap loss to
eliminate object overlapping. [31] use transformers for image generation. They learn layout
representation using graph transformer. Further an image transformer coupled with VQ-VAE
[25] is used to sample images from these layouts. [6] uses scene layout and segmentation
masks at sampling time of diffusion to generate graph aligned images. [36] introduce a
consistency module to overcome negligence of smaller object in the generated images.

Most of the existing works utilise a layout based representation of graphs and GAN-
based image generation. In this work we propose to use a graph representation which aligns
well with the semantic prior of diffusion models. We use this aligned graph representation as
a conditioning signal for diffusion based image generation. Notably, we eliminate the need
for layout generation and convert the two stage to single stage generation.

3 Method
In this section, we present our proposed methodology with a detailed description of each
component. We first give a brief overview of the conditional diffusion model. Subsequently,
we explain the functionality of the graph encoder, and the process of obtaining optimized
graph representations. We note that the diffusion models are conditioned on text embeddings
obtained from CLIP. However, the scene graph encodings are not aligned with the CLIP
latent space. We propose an alginment module to overcome this challenge. An overview of
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Figure 1: Overview of the proposed architecture. Graph encoder gives a CLIP aligned graph
embedding. This embedding is fused with semantic label embedding of objects present in
the scene graph. The fused embedding forms a conditioning signal for diffusion model.

our methodology is given in Figure 1.

3.1 Background for diffusion
Diffusion models form a class of generative models designed to simulate the process of data
generation through a series of diffusion steps. They constitute probabilistic generative mod-
els trained to comprehend data distributions through the sequential denoising of a variable
sampled from a given distribution, mainly Gaussian. In the context of conditional genera-
tion, the goal is to generate data conditioned on some input information. For our case, we
are concerned with pre-trained text-to-image diffusion model x̂θ . Given noise ε ∼ N (0, I)
and conditioning signal Scond , the model generates an image xgen as follows:

xgen = x̂θ (ε,Scond). (1)

U-net based architecture is used to predict the added noise. The training is guided by a
squared error loss to denoise an image or latent code with variable levels of noise. It is given
by,

E(x,ε,t)∥x− x̂θ (xt ,Scond)∥2
2, (2)

where x is the reference image, xt = αtx+σtε , is the noisy sample at diffusion time step
t. αt and σt control the noise schedule. For latent diffusion models, latent embedding of
input image is generated using VQGAN [4] or KL-Autoencoder [27]. All diffusion steps are
applied in latent space, and then the final latent is decoded into an image.

3.2 Graph Encoder
We use multi layer graph convolution network [12, 13] to generate graph features from scene
graph. We follow existing architecture of graph encoder for fair comparison with existing
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methodologies. Scene graph S contains a set of objects So and a set of relationships Sr. S is
represented using relationship triplets (oi,ri j,o j) where oi ∈ So and o j ∈ So are two objects
from object set So, and ri j ∈ Sr is the relationship between ith and jth object. Graph encoder
fuses individual object embedding and individual relationship embedding to give a global
scene graph embedding. For object oi, we take a set Out(oi) to be the set of object to which
oi has an outgoing directed edge. Set In(oi) denotes the set of objects where oi has an
incoming directed edge from these objects. We find embedding for object oi as follows:

Goout = Fout
o (Goi ,Gri j ,Go j) j∈Out(oi)

,Goin = F in
o (Go j ,Gr ji ,Goi) j∈In(oi),

Goi = F pool((Goout )∪ (Goin)),

where Goi ,Go j ∈ Rdo are the embeddings of object oi and o j respectively. Gri j ,Gr ji ∈ Rdr

are the embeddings for relationship ri j and r ji respectively. Fout
o ,F in

o are graph convolution
layers and F pool is an average pooling layer. Similar to this, we find relationship embedding
as follows:

Gri j = Frel(Goi ,Gri j ,Go j), (3)

where Frel is a graph convolution layer. After getting these individual object and relationship
embedding, we calculate a global graph feature Gs

global as follows. First we map each object
and relationship embedding to same dimension dg using Fo

dg
and Fr

dg
. Fo

dg
and Fr

dg
are 2 layer

MLP’s. They map do dimensional object embedding and dr dimension relationship embed-
ding to dg dimensional embedding respectively. After getting same dimension embedding,
we find an embedding to represent each individual triplet of scene graph as follows:

Gtripleti j = Fo
dg
(Goi)+Fr

dg
(Gri j)+Fo

dg
(Go j). (4)

Finally, a global embedding Gs
global , for a scene graph S is calculated by concatenating indi-

vidual triplet embedding and then mapping it to a dg dimensional feature.

Gs
global = Fglobal

dg
(concat(Gtripleti j))tripleti j∈S. (5)

We use Gs
global while creating a conditioning signal for fine-tuning text-to-image diffusion

model. The diffusion models are conditioned on CLIP embeddings of text prompts. Ini-
tially the latent space of the graph encoder output differs substantially from the CLIP feature
space. To bridge this gap, we propose Gs

global and CLIP Alignment module (GCA) to pre-
train graph encoder. We discuss this next.

 CLIP 
  

 (Frozen)

Graph 
Encoder

Discriminator

Input

Generator

Figure 2: GCA. Graph embed-
ding is aligned with CLIP fea-
tures.

3.3 Gs
global and CLIP Alignment

We use GAN-based pre-training to align Gs
global with

CLIP features. Figure 2 provides an overview of our
GAN-based CLIP alignment module. We consider graph
encoder as our generator and Gs

global as our generated
data. CLIP visual features, c, form real data. Discrimi-
nator is trained to predict whether the input is from real
or generated data. It guides the output of our generator
to align with CLIP features. Training of graph encoder
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is guided by Lgraph, where G(S) is graph encoder output
when given a scene graph S as an input. Lgraph is a standard generator loss for GAN-based
architectures, Lgraph = ES∼p(S) [− logD(G(S))].

Training of discriminator is guided by Ldisc, a standard discriminator loss for GAN-based
architectures. Let D(c) be the predicted probability by discriminator when the input is from
real distribution (CLIP features, c), Ldisc =−Ec∼p(c) [logD(c)]−ES∼p(S) [log(1−D(G(S)))].

3.4 Training diffusion model with CLIP guided graph conditioning
GS

global captures the overall structure and interaction between the entities of scene-graph.
However, this is global in nature. We hypothesize to use object label embeddings via CLIP
with GS

global in our conditioning signal. The object encodings via CLIP can provide fine-
grained semantic label details which can complement the global scene graph encodings. In
Figure 1, the semantic labels of objects present in the scene graph are passed through CLIP
text encoder to generate object label embedding Slabel . Then scene graph S is passed through
a graph encoder to generate embedding Gs

global using Eq.5. The object label embedding
captures the entity level information of the image, while GS

global captures the interaction
between these entities. Let labeli be the semantic label of ith object present in S. Then,

Slabeli =CLIPtext(labeli).

Finally we fuse Gs
global and Slabeli for all the labels to generate conditioning signal for fine-

tuning the diffusion model.

Scond = concat(Gs
global ,Slabeli) ∀i ∈ S.

We add textual padding to generate conditional signals of same dimension irrespective of
the number of objects present in the scene graph. However, we note that pre-trained diffuion
model we used is trained for text and image pairs. Thus it is necessary to design a training
strategy to generate images conditioned on Scond . Our training strategy is centered around
optimizing the scene graph input for the diffusion model. This ensures that the scene graph
aligns effectively with the input space of the diffusion model and weights of diffusion models
are optimized for our conditioning signal. Experimentally, we verified that, when we simply
pass our designed conditioning signal without fine-tuning the diffusion models, it results in
the generation of low-quality images. These images lack coherence with the input scene
graphs. Ablation results supporting the use of Slabel and the impact of fine-tuning are present
in the supplementary material.

3.4.1 Training objective

Our learning objective is two-fold. First, diffusion model should learn the underlying dis-
tribution of image and scene-graph pairs. Second, we want to map output of graph encoder
to a space where it aligns with prior semantic knowledge of text-to-image diffusion models.
We achieve these goals in the following manner.

Reconstruction Loss: We use a reconstruction loss to guide the diffusion model to learn
the underlying distribution of data. The loss Lrecon is given by,

Lrecon = E(x,S)∼data∥x− x̂θ (xt ,Scond)∥2
2, (6)
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where x̂θ is denoising network of diffusion, xt is the noised sample at diffusion time step
t, and Scond is the conditioning signal we curated. (x,S) is the image-graph pair, sampled
randomly from the data.

Alignment Loss: Towards the second goal of aligning Gs
global with CLIP space, we apply

a mean squared error loss between Gs
global and CLIP visual features of the corresponding

image. For an image-graph pair (x,S), the loss LCLIP is given by,

LCLIP = E(x,S)∼data∥Gs
global −CLIP(x)∥2

2. (7)

Additionally, we also use Maximum Mean Discrepancy (MMD) loss [15] to bridge the
domain gap between Gs

global and CLIP visual features. In our experiments we observe that
MMD loss makes the training stable, improves quantitative results and quality of images.
MMD loss L2

MMD is defined as follows:

Ec∼p(c) [φ(c,c)]+EG∼p(graph)

[
φ(Gs

global,G
s
global)

]
−2Ec∼p(c),G∼p(graph)

[
φ(c,Gs

global)
]
,

where c is the CLIP feature of an input image and Gs
global is the output of graph encoder for

the corresponding scene graph. φ is the kernel function. We combine both LCLIP and LMMD
to define an alignment loss as,

Lalign = βLCLIP +(1−β )LMMD, (8)

where β is a hyperparameter.
Total Loss: Now by considering both reconstruction loss and alignment loss we define

our training objective as, Ltrain = λLrecon +(1−λ )Lalign, where λ is a hyperparameter. We
fine tune diffusion model and graph encoder using Ltrain.

3.5 Sampling process
In Figure 2, stage 2 gives an overview for the sampling process. Once the diffusion network
is trained, we can sample images from a latent noise ε . For a fine-tuned denoising U-net x̂θ ,
we can sample latent conditioned on scene graph S as, xlatent = x̂θ (ε,Scond), where Scond is
the curated graph conditioning signal and ε ∼ N (0, I). xlatent is then decoded using diffu-
sion’s latent decoder to get an image. The generated image aligns well with the input scene
graph.

4 Experiments
In this section, due to the limited space, we briefly outline the implementation details of
our approach. More details regarding implementation can be found in the supplementary
material. We compare our results with existing state-of-the-art scene graph to image models.
We verify effectiveness of each component of our training scheme by providing ablation
results.

4.1 Experimental setup
We train and evaluate our model on COCO-stuff and Visual genome dataset. We follow
existing works [7, 12] to filter out and divide the data into training and validation set for fair
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comparison. To show effectiveness of our approach we evaluate our model using Inception
Score (IS) [29], Fréchet Inception Distance (FID) [8], Diversity Score (DS) [37], and Object
occurrence ratio (OOR) [36].

COCO-Stuff Visual Genome
Methods (Reference) FID↓ IS↑ DS↑ OOR↑ FID↓ IS↑ DS↑ OOR↑

SG2IM (CVPR’18) ∗ 125.58 7.8 0.02 – 92.8 6.5 0.1 –
PasteGAN (NeurIPS’19)∗ 70.2 11.28 0.60 – 130 6.5 0.38 –
Specifying (ICCV’19)∗ 68.27 15.2 0.67 70.84 – – – –
Canonical (ECCV’20)∗ 64.65 14.5 0.70 73.77 45.7 16.4 0.68 72.83
RetrieveGAN (ECCV’20) 56.9 10.2 0.47 – 113.1 7.5 0.30 –
SCSM (AAAI’22) 51.6 15.2 0.63 – 63.7 10.8 0.59 –
SGTransformer (CVIU’23)∗ 52.8 15.8 0.57 – 50.16 14.6 0.59 –
SceneGenie (ICCV’23) 63.27 22.16 – – 42.21 20.25 – –
LOCI (IJCAI’23) 49.8 15.7 0.65 81.26 44.9 14.6 0.62 79.04
Ours 38.12 30.18 0.73 82.38 35.8 26.2 0.71 81.04

Table 1: Quantitative results on Visual Genome and COCO-Stuff dataset. All the results are
either reproduced (∗) or taken directly from the original papers. Best results are shown in
bold letters, and second best results are underlined. Results are for 256×256 images.

4.2 Results
Quantitative results: Following previous works [7, 12, 36], we have reported a comparison
between our method and existing methods using FID score, IS, DS, OOR. Table 1 shows the
effectiveness of our method based on these evaluation metric. On COCO-stuff benchmark,
we are able to reduce FID score by 11.68, increase IS by 8.02 when compared to existing
SOTA [36], [6] respectively. We also achieve the best results for DS score and OOR implying
that the model generates diverse images yet contains the objects provided in the input scene
graph. From Table 1 we can see that similar to COCO-stuff, there is significant improvement
in terms of all the evaluation metrics for Visual Genome benchmark as well. Quantitative
results show that we generate high quality and diverse images which are aligned with the
given scene graph.

Qualitative results: Figure 3 show qualitative comparison between images generated by
publicly available existing models and our method. We compare our results with SG2IM
[12], canonicalization based model [7] and Transformer based model SGTransformer [31].
Qualitative comparison shows superior performance of our model. It can be seen that gen-
erated images align well with the input scene graph and conserve the relationship structure
provided by the scene graph. For example, in row 5, images generated by canonical and
SGTransformer contain trees, but fails to generate it’s shadow. Similarly in row 3, SG2Im
and canonical generate distorted images, whereas image generated by our model is most
consistent with the input scene graph. More qualitative results are given in supplementary.

Ablation study on COCO-stuff: In this section, we illustrate the significance of each com-
ponent in our training scheme. Gs

global and CLIP alignment (GCA) module aligns output
of the graph encoder with CLIP features of the corresponding image. This alignment is
important since text-to-image diffusion models have strong semantic prior of CLIP features.
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Figure 3: Qualitative comparison of (256×256) images generated by various publicly avail-
able scene graph to image models. All given input graphs corresponding to ground truth
images are perturbed slightly to check effectiveness of each methods.

Model type IS ↑ FID ↓
W/O GCA 27.6 43.28
W/O Lalign 28.72 41.17
W/O LMMD 29.24 39.4
Ours (λ=0.8,β=0.7) 29.74 39.28
Ours (λ=0.6,β=0.3) 28.2 40.12
Ours 30.18 38.12

Table 2: Ablation

In Table 2, W/O GCA shows the performance with-
out GCA. It is clearly evident that the incorpora-
tion of this module prior to fine-tuning the diffusion
model results in improvements in both IS and FID
scores. For fine-tuning diffusion model, we intro-
duce an alignment loss Lalign with a standard recon-
struction loss. After GCA, this loss further guides the
graph encoder to generate graph embeddings aligned
with CLIP latent spaces. We also take multiple com-
binations of hyperparameters λ and β to define our
training loss Ltrain. Finally, we show that our methodology containing GCA, Ltrain with
λ = 0.7,β = 0.5 gives best results.

5 Conclusion

In this work, we propose a novel scene graph to image generation method. Our method
eliminates the need of intermediate scene layouts for image synthesis. We use a pre-trained
text-to-image model with CLIP guided graph conditioning signal to generate images con-
ditioned on scene graph. We propose a GAN-based alignment module which aligns graph
embedding with CLIP latent space to leverage the prior semantic understanding of text-to-
image diffusion models. To further enhance the graph-conditioned generation, we introduce
an alignment loss. Through comprehensive assessments using various metrics that measure
the quality and diversity of generated images, our model showcases state-of-the-art perfor-
mance in the task of scene graph to image generation.
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